Parcours Systèmes Intelligents, Mobiles et Embarqués

Alternance
Nouvelles technologies
Intelligence artificielle
Informatique mobile
Systèmes embarqués
Internet des objets
Robotique

Objectifs

Le parcours Systèmes Intelligents, Mobiles et Embarqués (SIME) vise la formation d'ingénieurs capable de mener des projets intégrant des aspects logiciels et matériels, pour tous les secteurs des nouvelles technologies de l'information et de la communication (NTIC). Sous la dénomination NTIC on retrouve toutes les technologies émergentes dont les ingrédients principaux sont l'informatique mobile (smartphone, tablette, etc.), les systèmes embarqués (internet des objets), et l'intelligence artificielle. Le parcours SIME est une formation complète qui vise à former des spécialistes de ces trois domaines, en lien fort avec les acteurs industriels de la santé mobile, des télécommunications, de l'aéronautique, des transports, de la "silver économie", etc.

Professionnalisant

En plus des nombreuses heures de formations consacrées à la pédagogie par la pratique (TP, gestion de projets, outils de versionnage, etc.), le parcours SIME vise à professionnaliser les étudiants:

  • Le parcours est accessible en alternance.
  • Des acteurs du monde de l'industrie participent aux enseignements, aux encadrements en projet ou interviennent en séminaires.
  • Le stage de fin de cursus constitue une première expérience professionnelle significative, en immersion dans l'entreprise et abouti le plus souvent à une première embauche dans le domaine des NTIC.

Projets et Stages

Les projets et les stages prennent une part importante de la formation de ce parcours, avec:

  • un stage ou un projet en M1 : un stage en laboratoire ou en entreprise pour une durée minimale de 8 semaines ou un projet à réaliser à l'Université en autonomie sous la supervision d'un membre de l'équipe pédagogique.
  • un projet en M2 : projet d’envergure, sur les deux semestres du M2, effectué en équipe pour le compte d’un client extérieur. Ces projets visent à concevoir, développer et réaliser des applications technologiques ou scientifiques en lien avec la formation dispensée.
  • un stage en M2 : un stage de fin d'étude d'une durée comprise entre 4 et 6 mois, à effectuer en entreprise ou en laboratoire de recherche.

Programme

L'objectif de cette UE est d'atteindre une plus grande aisance dans l'expression orale en Anglais dans des contextes généraux et professionnels tels que la prise de parole en public ou lors d'un entretien en anglais ou d'une réunion. Seul ou en équipe au sein d'un groupe restreint, il s'agit d'être capable de travailler et de présenter des arguments à l'oral à un niveau B2 du CECRL. Cela passe en particulier par :

  • L'apprentissage de la méthodologie de la prise de parole en public.
  • Un travail intensif (atelier spécifiques) sur les règles de prononciation de la langue anglaise (accent britannique ou nord-américain) pour viser une expression authentique à l'oral.
  • L'acquisition du vocabulaire et des expressions propres à la communication écrite et orale dans des contextes généraux et professionnels.

L'objectif de cette UE est de présenter les bases de l’apprentissage automatique (les différents types de contextes/tâches/applications), à comprendre le fonctionnement des principales méthodes d’apprentissage automatique, et à donner les principes méthodologiques expérimentaux pour la mise en œuvre de ces méthodes. Le but est de maîtriser les différentes tâches de l’apprentissage automatique, de comprendre les différences entre les méthodes et leur principe de fonctionnement et de savoir monter un protocole expérimental pour tester et comparer ces méthodes sur des jeux de données réels. Les thèmes abordés sont :

  • Les classifieurs paramétriques et non paramétriques, génératifs ou discriminants (estimation de gaussiennes, estimateur de Parzen, k plus proches voisins, séparateur linéaire (perceptron, SVM))
  • Les classifieurs hiérarchiques (arbres de décision)
  • Réseaux de neurones (MLP)
  • La sélection de modèles

L'objectif de cette UE est d'introduire la problématique de Web de données à la fois du point de vue historique et technique. Ce sont les technologies du Web sémantique qui permettent d’implémenter les principes fondamentaux de ce Web de données. Celui-ci s’accompagne d’une pile de standards délivrés par le World Wide Web Consortium (W3C) que ce cours propose d’appréhender à la fois de manière théorique et pratique. L’objectif premier de ce cours et de permettre aux étudiants d’acquérir une connaissance du fonctionnement du Web sémantique et de ses principes architecturaux. Cela s’avère indispensable à une bonne compréhension du Web d’aujourd’hui compte tenu de la part grandissante qu’y prennent les technologies du Web Sémantique. L’objectif secondaire et de former aux standards du Web sémantique afin notamment d’aboutir à une compréhension concrète et maîtrisée de la notion d’ontologie et de leur capacité à mettre en œuvre des raisonnements et des déductions de nouvelles données. Les compétences visées sont :

  • Comprendre le concept de Web de données et connaître les principes architecturaux du Web sémantique.
  • Maîtriser les langages de représentation adaptés à la publication de données liées sur le Web (modèle RDF).
  • Maîtriser les principaux aspects du langage de requête SPARQL qui permet l’interrogation et la modification des données (liées) au travers du Web.
  • Appréhender la notion d’ontologie et les langages permettant de les écrire (RDFS, OWL, SKOS).

L'objectif de cette UE est de s'initier à la conception d’interface graphique avec les technologies du Web. Elle vise à former à l’utilisation des technologies HTML/CSS pour la création d’interface Web, en mettant l’accent sur les techniques modernes de conception web réactive (responsive web design). À l’issue de cet enseignement, les étudiants devront être capables de concevoir des interfaces graphiques adaptatives multi-supports, c’est-à-dire qui soient fonctionnelles sur tous types d’écrans (mobile, tablette, ordinateurs, etc.). Ce cours n'aborde pas de concepts d’ergonomie ou de graphisme, mais se concentre sur la maîtrise technique des outils dédiés. Les compétences visées sont :

  • Maîtriser le HTML5 pour la structuration des documents web.
  • Maîtriser les principes clés du CSS pour la mise en forme et le rendu visuel et fonctionnel de ces pages.
  • Maîtriser les techniques fondamentales de conception web réactive (agencement flexible, média flexible, media queries, etc...).

L'objectif de cette UE est de présenter les outils théoriques et pratiques permettant le traitement des signaux aléatoires, en particulier sur les aspects liés au filtrage des signaux. Il s'agit de maîtiser les approches classiques pour de tels traitements. Les compétences visées sont :

  • Approfondissement théorique des outils du traitement du signal.
  • Mise en pratique des méthodes vues en cours.

L'objectif de cette UE est de savoir organiser un travail d’équipe autour d’un projet de développement utilisant de l’IA :

  • Connaître et mettre en œuvre les principes de gestion d’équipe (cycles, agilité...)
  • Maîtriser les outils courants de gestion de projet (diagrammes, tableaux de bord, suivi de version...)

L'objectif de cette UE est de présenter la gestion des processus et de leur communication sous Linux : fork, signaux, fichiers et tubes, IPC, sockets. Il s'agit de savoir créer un processus et contrôler son cycle de vie, et de connaître, savoir analyser et mettre en œuvre les différents types de communication entre processus

L'objectif de cette UE est la présentation des bonnes pratiques pour architecturer une application mobile, dans le cas d’Android avec le langage Kotlin : MVVM, injection, tests. Il s'agit de savoir réaliser une application Android en Kotlin en suivant les recommandations officielles de bonne architecture (MVVM), de savoir utiliser l’injection pour l’inversion des dépendances, et de savoir créer des tests unitaires, d’intégration, et de bout en bout.

L'objectif de cette UE est de concevoir des documents professionnels (CV et lettre de motivation) en cohérence avec un objectif professionnel et de se préparer à l’entretien d’embauche.

L'objectif de cette UE est d'atteindre une plus grande aisance dans l'expression orale en anglais dans des contextes généraux et professionnels tels que la prise de parole en public ou lors d'un entretien en anglais ou d'une réunion. Seul ou en équipe au sein d'un groupe restreint, il s'agit d'être capable de travailler et de présenter des arguments à l'oral à un niveau B2 du CECRL. Cela passe en particulier par :

  • L'apprentissage de la méthodologie de la prise de parole en public.
  • Un travail intensif (atelier spécifique) sur les règles de prononciation de la langue anglaise (accent britannique ou nord-américain) pour viser une expression authentique à l'oral.
  • L'acquisition du vocabulaire et des expressions propres à la communication écrite et orale dans des contextes généraux et professionnels.

L'objectif de cette UE est de présenter la problématique d'optimisation combinatoire et les approches de référence pour traiter de tels problèmes. Il permettra de maîtriser les algorithmes standards de résolution de problèmes de recherche opérationnelle (programmation dynamique, programmation mathématique, algorithmes de branchement...). L'UE fournit aux étudiants une culture de base en recherche opérationnelle, qui les rend capables de modéliser un problème d'optimisation combinatoire et de choisir l'approche adaptée pour le résoudre et de l’évaluer.

L'objectif de cette UE est une introduction aux réseaux de neurones multicouches et leur algorithme d'apprentissage par rétropropagation du gradient de l'erreur. L'algorithme SGD est présenté et le problème de la disparition du gradient dans les architectures profondes est mis en évidence. Les différentes techniques permettant de maîtriser ce phénomène sont présentées. Les réseaux convolutifs sont ensuite abordés, et mis en valeur pour les applications à la reconnaissance de visages. Les architecture de réseaux récurrents sont présentés pour la reconnaissance de la parole. Les architectures de réseaux adverses permettent d’aborder les techniques de génération de fausses données. L'objectif est de comprendre et maîtriser les techniques modernes d’apprentissage supervisée et faiblement supervisée reposant sur les architectures de réseaux de neurones, et réseaux de neurones profonds. Comprendre et maîtriser les algorithmes d’optimisation spécifiques à ces architectures. Savoir mettre en œuvre ces algorithmes en utilisant les environnements de calcul dédiés en langage python, tels que Tensor Flow, Keras, ou PyTorch.

L'objectif de cette UE est de permettre l'acquisition d’une démarche méthodologique, la mise en place d’une démarche globale prenant en compte l'écosystème du domaine des systèmes embarqués et temps réel dans une finalité de compréhension générale du système. Cela passe par une sensibilisation aux concepts fondamentaux des systèmes embarqués temps réel. Cette UE permettra la conception et la réalisation de prototypes complets de systèmes embarqués Temps réel communicants sur la base de cartes de type Arduino ou Raspberry Pi.

Cette UE s’incrit dans la continuité de l’UE4 du S1 et complète la formation aux technologies HTML/CSS avec la formation au JavaScript qui permet d’implémenter des comportements dynamiques (par exemple, intéractions avec l’utilisateur) dans des documents Web. Ces trois technologies sont indissociables en conception Web côté client. À l’issue de cet enseignement, les étudiants seront capables d’enrichir des interfaces graphiques Web (documents HTML/CSS) de comportements d’intéractions avec l’utilisateur, mais aussi de mécanismes de conception web réactifs plus riches et plus sophistiqués.

L'objectif de cette UE est de mettre en application pendant au moins 8 semaines les enseignements théoriques reçus pendant la période des cours, dans le cadre de projets académiques ou industriels. Les projets sont réalises au sein de l'URN. Le stage peut être réalisé en laboratoire ou en entreprise.

L'objectif de cette UE est de préparer les étudiants à la soutenance de projet et/ou de stage. Les étudiants sont formés à élaborer une présentation orale (scientifique ou professionnelle), à présenter une contribution scientifique auprès d’un public spécialiste ou non spécialiste et à identifier, formaliser et défendre un projet professionnel.

Ce cours vise à permettre aux étudiants de maîtriser les règles de communication écrite et orale dans des contextes généraux et professionnels.

Les objectifs de cette UE sont d'atteindre une plus grande aisance dans l’expression orale dans des contextes généraux et professionnels tels que la prise de parole en public ou lors d’un entretien en anglais, et de maîtriser les outils langagiers propres à la communication écrite professionnelle.

Les compétences visés sont l'acquisition du vocabulaire et des expressions propres à la communication écrite et orale dans des contextes généraux et professionnels.

Le sujet de cet enseignement est la conception web côté serveur avec les technologies Jakarta EE (anciennement Java EE). En s’appuyant sur les différentes API de cette plateforme, le cours vise à décrire les différentes techniques de programmation serveur de façon conceptuelle, technique et illustrée par des exemples concrets.

À l’issue de cet enseignement, les étudiants seront familiarisés avec les différentes approches de programmation web côté serveur et seront techniquement capables de les mettre en œuvre avec des API ou frameworks Jakarta EE.

Compétences et apprentissages visés :

  • Connaître la plupart des API disponibles dans la plateforme Jakarta EE
  • Maîtriser la mise en œuvre des API les plus fondamentales (Servlet, JSP, JSF, JAX, etc)
  • Connaître le fonctionnement des frameworks Java les plus répandues dans l’industrie de nos jours (e.g. Spring)

Ce cours est l'un des choix possibles de l'UE 3 : Machine Learning and Artificial Intelligence 1.

Ce choix ne fait pas partie du parcours SIME (cf. parcours SD).

Ce cours est l'un des choix possibles de l'UE 3 : Machine Learning and Artificial Intelligence 1.

Le cours décrit de manière chronologiques (historique) les principaux algorithmes et méthodes de reconnaissance de séquences, utilisés, en reconnaissance de la parole, de l'écriture, de traitement automatique du langage naturel, analyse de geste, analyse de vidéo. L'accent est mis sur les algorithmes plutôt que sur les applications : Modèles de Marko Cachés, Champs Aléatoires Conditionnels, Modèles Neuro-Markoviens, Réseaux de Neurones Récurrents, Modèles à Attention. Ces algorithmes sont implémentés en partie par l'étudiant lors des séances de TP, puis ils sont mis en oeuvre expérimentalement sur un problème d'apprentissage et de reconnaissance de séquences de symboles manuscrits. L'évaluation du module est constituée d'une soutenance orale des résultats expérimentaux obtenus par l'étudiant sur les différents sujets abordés en TP. L'accent est mis sur les expérimentations personnelles qui ne meuvent être menées lors des séances de TP pour des raisons pratiques de temps de calcul.

Objectifs :

  • Comprendre et maîtriser les algorithmes de la littérature en analyse de séquences.
  • Maîtriser la mise en œuvre expérimentale de ces algorithmes sur les sujets proposés lors des séances de Travaux Pratiques qui donnent lieu à des travaux expérimentaux personnels.

Compétences et apprentissages visés :

  • Maitrise approfondie des algorithmes d'inférence statistique dans les séquences, approche "concepteur".
  • Maitrise expérimentale de ces algorithmes mis en œuvre sur l’une des plateforme d’apprentissage profond telle que TensorFlow ou Pytorch.

Ce cours est l'un des choix possibles de l'UE 3 : Machine Learning and Artificial Intelligence 1.

Cet enseignement présente un panorama des méthodes d’apprentissage appliquées aux représentations de type graphes. Après une introduction aux représentations à base de graphes et aux algorithmes standards de manipulation de telles structures, les approches permettant le matching de graphes, le calcul de dissimilarités entre graphes ou encore le plongement de graphes dans un espace Euclidien sont abordées. Le cours se termine par une présentation des approches les plus récentes pour faire de l’apprentissage profond dans des graphes.

L'objectif est de fournir aux étudiants une culture sur le traitement de données de type graphes, avec les méthodes à l'état de l'art.

Compétences et apprentissages visés :

  • Développer des modèles d’apprentissage sur graphes
  • Adapter les modèles aux spécificités des données traitées
  • Analyser les performances d’un modèle d’apprentissage

Ce cours est l'un des choix possibles de l'UE 3 : Machine Learning and Artificial Intelligence 1.

Il aborde les méthodes avancées en :

  • débruitage d'images (filtrage bilateral, filtrage NLM, modèle ROF, )
  • segmentation d'images avec approches variationnelles (contours actifs déformables, jeux de niveaux) ainsi que graph cut, NCut, Felzenschwab, méthodes de superpixel (SLIC)
  • segmentation d'images avec apprentissage profond, CNN (UNet) et Transformer (vision transformer)
  • détection d'objet (approches de vision par ordinateur et architectures d'apprentissage profond)
  • Architectures DL pour le débruitage, le transfert de style, la colorisation, la reconstruction, la super-résolution, les modèles génératifs (modèles de diffusion)
On abordera aussi l'explicabilité dans les modèles de vision.

Ce cours est l'un des choix possibles de l'UE 3 : Machine Learning and Artificial Intelligence 1.

Ce cours constitue une introduction à l'apprentissage par renforcements. Il a pour objectifs de poser les concepts fondamentaux et leur transposition moderne avec les outils de l'apprentissage profond. Au programme : (1) Bandit, (2) MDP, résolution exacte, (3) Méthodes de Monte-Carlo, (4) Différence temporelle, (5) Méthodes tabulaires, récursions, (6) Approximation par réseaux profonds.

Compétences et apprentissages visés :

  • Mise en place d'un environnement d'apprentissage par renforcement
  • Algorithmes d'apprentissage

Ce cours est l'un des choix possibles de l'UE 3 : Machine Learning and Artificial Intelligence 1.

Ce choix ne fait pas partie du parcours SIME (cf. parcours SD).

Comparaison de plusieurs cadres de développement : iOS natif, hybride orienté web (Ionic), hybride non orienté web (Flutter).

Le cours vise à explorer les différents cadres sur les aspects principaux du développement mobile : architecture, interface utilisateur déclarative, navigation, gestion asynchrone.

Dans ce cours nous appréhenderons les technologies et les protocoles réseaux permettant d'établir une connectivité à plus ou moins grande distance (sur un réseau local ou bien à distance à travers le réseau Internet) entre terminaux mobiles (smartphones, tablettes) et entre systèmes embarqués numériques (objets communicants), pour un échange de données plus ou moins important, en respectant diverses contraintes (consommation d’énergie, volume de données échangées, périodicité des échanges). Nous aborderons en particulier les technologies d'accès réseau sans fil, tels que les technologies NFC, Bluetooth, WiFi, particulièrement adaptées aux interactions entre terminaux mobiles, mais aussi les technologies de réseaux sans fil à basse consommation et longue portée, telles que SigFox et LoRaWAN largement utilisées dans les réseaux de capteurs et l’Internet des Objets. Nous étudierons le fonctionnement de ces technologies, et nous les comparerons au regard de leurs avantages et inconvénients. Nous aborderons également la question du routage des paquets d’information dans les réseaux d’objets connectés et nous étudierons le protocole 6loWPAN, adaptation du protocole IPv6 pour l’acheminement des datagrammes IP sur ces réseaux, ainsi les protocoles de transport et applicatifs, adaptés à l’IoT, tels que MQTT et coAP.

L'objectif est d'être capable de concevoir et développer des applications mettant en œuvre des interactions entre terminaux mobiles ou encore doter des systèmes numériques embarqués de moyen de communication afin d'obtenir des objets numériques communicants, capable de s'échanger de l'information, et avec lesquels il est possible d'interagir à distance à travers le réseau Internet.

Compétences et apprentissages visés :

  • Compréhension du fonctionnement des technologies abordées
  • Être capable de faire des choix de technologies et de mise en œuvre en fonction des contraintes spécifiées par le cahier des charges
  • Maîtrise des protocoles étudiés
  • Être capable d'analyser une architecture réseau et d'en effectuer la simulation sur un simulateur réseau tel que Cisco Packet Tracer
  • Être capable d'effectuer la configuration réseau des éléments d'un réseau de terminaux mobiles et objets connectés
  • Être capable d'analyser les trames d'information et de supervision échangées par les différents protocoles de communication étudiés à l'aide d'un outil d'analyse de trames

L'objectif est de maîtriser le développement d’applications embarquées robotiques communicantes, puissantes, fiables et évolutives.

Compétences et apprentissages visés :

  • Installer et configurer l'environnement et les outils nécessaires pour la programmation ROS2
  • Savoir utiliser l’ensemble des concepts sous-jacents à ROS2 (Topics, Noeuds, Services, Fichiers, Interfaces)
  • Implémentation sur bras robotique Niryo Ned

Étude et comparaison de différentes architectures dédiées au développement et à la mise en œuvre de solutions d'apprentissage automatique. En particulier, ce cours se concentrera sur l'apprentissage automatique embarqué.

L'objectif est de connaître les principales architectures dédiées à l’apprentissage automatique (GPU, TPU, ...) et les utiliser.

Conception et réalisation en équipe d’une solution mobile et/ou embarquée répondant au besoin d’un partenaire extérieur.

Compétences et apprentissages visés :

  • Réaliser un cahier des charges et dégager les besoins fonctionnels d’une problématique client
  • Mettre en œuvre les outils de gestion de projet au sein d’une équipe d’environ 6 étudiants

Cette UE a pour but d’informer les étudiants sur le fonctionnement d’une entreprise et de les amener à adopter une posture professionnelle.

  • l’entreprise, ses différents aspects
  • le salarié, droits et contrats
  • le management, le travail d’équipe, le brainstorming
  • le suivi de projets

Ce cours est l'un des choix possibles de l'UE 1 : Machine Learning and Artificial Intelligence 2.

  • Acquisition d'images médicales et caractéristiques
  • Conception de méthodes d'analyse d'images médicales
  • Segmentation d'images médicales, mesures d'évaluation pour la segmentation d'images médicales
  • Comment atténuer le besoin de données étiquetées (apprentissage faiblement supervisé, apprentissage semi-supervisé) ?
  • Enregistrement des images
  • Caractérisation des images : Attributs statistiques, matrice de cooccurrence, analyse mutlifractale, filtrage, représentation de la forme. Extraction de caractéristiques à l'aide d'un auto-encodeur
  • Fusion d'images médicales multimodales. Fusion d'informations (ensembles flous, fonctions de croyance, théorie des probabilités). Fusion basée sur l'apprentissage profond

Ce cours est l'un des choix possibles de l'UE 1 : Machine Learning and Artificial Intelligence 2.

Ce cours présentera les principes généraux du traitement automatique des langues (NLP), les différentes tâches du domaines, les principaux modèles de Machine et Deep Learning

Objectif :

  • Savoir réaliser un projet de traitement automatique de données textuelles par Machine et Deep Learning

Compétences et apprentissages visés :

  • Savoir préparer des données textuelles
  • Savoir entrainer et évaluer des modèles de NLP
  • Savoir choisir un modèle adapté à la tâche

Ce cours est l'un des choix possibles de l'UE 1 : Machine Learning and Artificial Intelligence 2.

Ce cours permet de maîtriser l’usage des outils mathématiques et informatiques pour réaliser des applications de Vision par Ordinateur.

L’objectif de ce cours est de parcourir l’ensemble des outils mis en œuvre pour la réalisation d’application de CV, en allant des notions de géométrie (géométrie projective, transformations) jusqu’à la reconnaissance d’objets en passant par les techniques de traitement d’images permettant de détecter et de mettre en correspondance des primitives exploitées dans la plupart des applications de CV.

Compétences et apprentissages visés :

  • Connaître les outils mathématiques impliqués dans la CV
  • Mobiliser les connaissances théoriques vues en cours pour la réalisation d’applications de CV
  • Développer des applications de CV en utilisant la librairie la plus répandue en CV : OpenCV

Ce cours est l'un des choix possibles de l'UE 1 : Machine Learning and Artificial Intelligence 2.

Ce cours présente la problématique de la recherche d’information. Il présente les différents modèles d’indexation et de requétage associé. Il présente également des différents prétraitements mis en œuvre pour alimenter ces modèles ainsi que les méthodologies d’évaluation des systèmes et leur optimisation.

L’objectif est de donner aux étudiants une compréhension de la problématique de la recherche d’information et présentant les principaux modèles (binaires, vectoriels, probabilistes), des traitements spécifiques à la manipulation du texte (segmentation, stemming, radicalisation…), ainsi que les aspects d’interactions avec l’utilisateur visant l’optimisation des résultats (boucle de pertinence, désambiguïsation/expansion de requêtes...).

Compétences et apprentissages visés :

  • Modéliser un problème de recherche d’information
  • Détermination du modèle de recherche d’information selon la situation
  • Mise en œuvre de traitements du texte pour alimenter ces modèles
  • Évaluation des systèmes de recherche d’information

Ce cours est l'un des choix possibles de l'UE 1 : Machine Learning and Artificial Intelligence 2.

Ce cours porte sur le problème applicatif de la recherche d'images, cas particulier de la recherche d'information, et plus spécifiquement sur les techniques de recherche d'images par le contenu (content based image retrieval). Dans ce cadre, on y aborde les problématiques de modes d'interrogation, de représentation des images (extraction de caractéristiques, représentation vectorielle, caractérisation locale vs globale des images, représentation profonde) pour l'indexation et la recherche d'informations, de calcul de similarité entre les représentations, de retour utilisateur, de performances et de passage à l'échelle. On aborde aussi les problématiques d'object detection, de spotting (word et pattern) et d'apprentissage d'un modèle pour la recherche d'images à partir de peu d'exemples.

L’objectif est de présenter l'évolution du domaine applicatif de la recherche d'images, en particulier la recherche d'images par le contenu, et dresser un panorama des techniques de recherche d'images à l'état de l'art.

Compétences et apprentissages visés :

  • être capable de concevoir un système de recherche d'images par le contenu en évaluant l'influence du mode de représentation, du choix de la mesure de similarité et des post-traitements pour fiabiliser le système
  • être capable de développer en Python un moteur simple de recherche d'images par le contenu, évaluer ses performances
  • être capable de développer en Python un moteur permettant le passage à l'échelle
  • être capable de comparer les systèmes de recherche d'images

Ce cours est l'un des choix possibles de l'UE 1 : Machine Learning and Artificial Intelligence 2.

Acquérir les compétences essentielles au développement d'applications permettant des interactions hommes-machines.

Objectifs :

  • Acquérir les compétences essentielles au développement d'applications permettant des interactions hommes-machines intuitives et adaptées à l'utilisateur et au contexte.
  • Illustrer la notion de proactivité d'une IHME qui proposerait un comportement et/ou de l'information adaptée, alors même que l'utilisateur n'en fait pas la demande explicite.
  • Illustrer ces concepts sur des exemples concrets
  • Introduction à la recherche (synthèse bibliographique, modélisation et résolution d'un problème scientifique,...)

Compétences et apprentissages visés :

  • Modèles formels pour l'interaction (automates, HMM, SMA, seq2seq, graphes, ...)
  • Realité virtuelle et augmentée (Interaction humain-agent/robot, communautés mixtes, informatique ubiquitaire, ...)
  • Captation de comportements (reconnaissance d'expressions faciales ou de gestes, catégorisation de comportements,...)
  • Interactions (chatbots, agents conversationnels animés, analyse d'opinion et de sentiment, réseaux sociaux,...)
  • Modèles formels pour l'interaction (automate, HMM, MAS, seq2seq, graphes, ...)
  • Réalité virtuelle et augmentée (intéraction humain/robot, communauté mixte, informatique ubiquitaire, ...)
  • Capture comportementale (reconnaissance des expressions faciales ou des gestes, apprentissage de profils utilisateur, ...)
  • Interactions (chatbots, agents conversationnels incarnés, reconnaissance d'opinion, analyse de sentiments, analyse de réseaux sociaux)

Ce cours est l'un des choix possibles de l'UE 1 : Machine Learning and Artificial Intelligence 2.

Le cours est destiné à donner aux étudiants une vue complète des principes fondamentaux et des techniques de combinaison de plusieurs classifieurs ou modèles d'apprentissage automatique.

Objectifs :

  • Maîtriser l'art de combiner les classifieurs.

Compétences et apprentissages visés :

  • Systèmes multi-classifieurs (motivation, terminologie, applications, taxonomie des méthodes de fusion : architectures séquentielles, parallèles, hybrides)
  • Opérateurs de combinaison/fusion (basée sur les classes, basée sur les rangs, basée sur les mesures, paramétrique, non paramétrique, en cascade)
  • Ensemble de classifieurs (diversité dans les ensembles, comités à validation croisée, bagging, boosting, sous-espaces aléatoires, ECOC, forêts aléatoires et variantes, XGBoost)

Traitement et mise en forme de données reçues à partir d’un webservice et du terminal mobile, persistance des données sur le terminal mobile, gestion des requêtes et réponses en arrière-plan.

L'objectif est de savoir réaliser au sein d’une architecture d’application Android des requêtes de type webservice, de manière asynchrone et éventuellement en arrière-plan ; conserver les données dans une base locale ; gérer les permissions d’accès aux données fournies par un terminal mobile.

Étude de solutions mobiles et embarquées dans un environnement complexe nécessitant l’utilisation de l’apprentissage automatique.

L'objectif est la conception de solutions coordonnant :

  • Un modèle d’apprentissage automatique préexistant ou entraîné sur une architecture dédiée
  • Un système mobile ou embarqué pour exploiter le modèle de manière locale ou distante

Réalisation en équipe et livraison d’une solution mobile et/ou embarquée répondant au besoin d’un partenaire extérieur.

Compétences et apprentissages visés :

  • Réaliser un cahier des charges et dégager les besoins fonctionnels d’une problématique client
  • Mettre en œuvre les outils de gestion de projet au sein d’une équipe d’environ 6 étudiants

Mise en application des enseignements théoriques reçus pendant la période des cours dans le cadre de projets académiques ou industriels

Le stage peut être réalisé en laboratoire ou en entreprise.